Manifold adaptive regression : insights from the behaviours of Matern processes

joint work with Viacheslav Borovitskiy, Alexander Terenin, Judith Rousseau

September 18, 2023

イロト 不同 とうほう 不同 とう

1/24

- 2 Gaussian process regression
- 3 Matérn processes
- Extension to Besov priors
- 5 Conclusion & future work

Geometrical setting

• $\mathcal{M} \subset \mathbb{R}^D$ = smooth compact submanifold without boundary \rightsquigarrow support of our data

Geometrical setting

- $\mathcal{M} \subset \mathbb{R}^D$ = smooth compact submanifold without boundary \rightsquigarrow support of our data
- $dim(\mathcal{M}) = d < D$: goal = dimension reduction

Geometrical setting

- $\mathcal{M} \subset \mathbb{R}^D$ = smooth compact submanifold without boundary \rightsquigarrow support of our data
- $dim(\mathcal{M}) = d < D$: goal = dimension reduction
- μ = d-dim Hausdorff measure (normalization : μ(M) = 1)
 → notion of densities wrt μ on M

Geometrical setting

- $\mathcal{M} \subset \mathbb{R}^D$ = smooth compact submanifold without boundary \rightsquigarrow support of our data
- $dim(\mathcal{M}) = d < D$: goal = dimension reduction
- μ = d-dim Hausdorff measure (normalization : μ(M) = 1)
 → notion of densities wrt μ on M

イロン 不同 とくほど 不良 とうほ

Gaussian process regression Matérn processes Extension to Besov priors Conclusion & future work

Statistical model

Gaussian process regression Matérn processes Extension to Besov priors Conclusion & future work

Statistical model

Regression with random design

$$y_i = f_0(x_i) + \epsilon_i, \epsilon_i \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$

$$x_i \overset{i.i.d}{\sim} p_0 \cdot \mu, i = 1, \dots, n, p_0$$
 density wrt μ

Gaussian process regression Matérn processes Extension to Besov priors Conclusion & future work

Statistical model

Regression with random design

$$y_i = f_0(x_i) + \epsilon_i, \epsilon_i \stackrel{i.i.d}{\sim} \mathcal{N}\left(0, \sigma^2\right)$$

$$x_i \overset{i.i.d}{\sim} p_0 \cdot \mu, i = 1, \dots, n, p_0$$
 density wrt μ

 \rightsquigarrow here for simplicity $\sigma > 0$ is known

Gaussian process regression Matérn processes Extension to Besov priors Conclusion & future work

Statistical model

Regression with random design

$$y_i = f_0(x_i) + \epsilon_i, \epsilon_i \stackrel{i.i.d}{\sim} \mathcal{N}\left(0, \sigma^2\right)$$

$$x_i \stackrel{i.i.d}{\sim} p_0 \cdot \mu, i = 1, \dots, n, p_0$$
 density wrt μ

→ here for simplicity $\sigma > 0$ is known **question :** how can we efficiently estimate f_0 ? In which sense ? How fast ?

Gaussian process regression Matérn processes Extension to Besov priors Conclusion & future work

General strategy

General strategy

 X = input space, f ~ Π = prior distribution stochastic process = random function

General strategy

- X = input space, f ~ Π = prior distribution stochastic process = random function
- conditional on observing

$$y_i = f_0(x_i) + \epsilon_i \iff y_i - f_0(x_i) \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$

this gives a posterior distribution $\Pi[\cdot|\mathbb{X}^n]$ on f, $\mathbb{X}^n = (x_i, y_i)_{i=1}^n$

General strategy

- X = input space, f ~ Π = prior distribution stochastic process = random function
- conditional on observing

$$y_i = f_0(x_i) + \epsilon_i \iff y_i - f_0(x_i) \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$

this gives a posterior distribution $\Pi[\cdot|\mathbb{X}^n]$ on f, $\mathbb{X}^n = (x_i, y_i)_{i=1}^n$

 bonus : if Π = Gaussian process then Π[·|Xⁿ] is also Gaussian with explicit parameters

General strategy

- X = input space, f ~ Π = prior distribution stochastic process = random function
- conditional on observing

$$y_i = f_0(x_i) + \epsilon_i \iff y_i - f_0(x_i) \stackrel{i.i.d}{\sim} \mathcal{N}(0, \sigma^2)$$

this gives a posterior distribution $\Pi[\cdot|\mathbb{X}^n]$ on f, $\mathbb{X}^n = (x_i, y_i)_{i=1}^n$

- bonus : if Π = Gaussian process then Π[·|Xⁿ] is also Gaussian with explicit parameters
- as $n \to \infty$ then we expect "contraction" of the posterior $\Pi \left[\cdot | \mathbb{X}^n \right]$ around f_0 (in some sense)

(日) (同) (E) (E) (E)

Gaussian process regression Matérn processes Extension to Besov priors Conclusion & future work

Illustration in 1D

Figure: source : scikit-learn.org

≣ •ી લ ભ 6 / 24

Gaussian process regression

• GPs are powerful Bayesian nonparametric priors for regression

- GPs are powerful Bayesian nonparametric priors for regression
- as Bayesian methods they are especially interesting because they come with a natural notion of uncertainty quantification (sort of)

- GPs are powerful Bayesian nonparametric priors for regression
- as Bayesian methods they are especially interesting because they come with a natural notion of uncertainty quantification (sort of)
- their statistical properties are now well understood through an elegant theory

- GPs are powerful Bayesian nonparametric priors for regression
- as Bayesian methods they are especially interesting because they come with a natural notion of uncertainty quantification (sort of)
- their statistical properties are now well understood through an elegant theory
- there has been recent developments on the construction of GPs on non-Euclidean spaces such as graphs or manifolds

Construction of stochastic processes on ${\cal M}$

Construction of stochastic processes on $\ensuremath{\mathcal{M}}$

For our story :

• if $\mathcal{M} = \text{known}$: take a prior $f \sim \Pi$ defined on $\mathcal{X} = \mathcal{M}$ and condition on the observations

Construction of stochastic processes on $\ensuremath{\mathcal{M}}$

For our story :

- if $\mathcal{M} = \text{known}$: take a prior $f \sim \Pi$ defined on $\mathcal{X} = \mathcal{M}$ and condition on the observations
- if $\mathcal{M} \subset \mathbb{R}^D$ = unknown : take a prior $f \sim \Pi$ defined on $\mathcal{X} = \mathbb{R}^D$ and condition on the observations

Construction of stochastic processes on $\ensuremath{\mathcal{M}}$

For our story :

- if $\mathcal{M} = \text{known}$: take a prior $f \sim \Pi$ defined on $\mathcal{X} = \mathcal{M}$ and condition on the observations
- if $\mathcal{M} \subset \mathbb{R}^D =$ unknown : take a prior $f \sim \Pi$ defined on
 - $\mathcal{X} = \mathbb{R}^D$ and condition on the observations

 \rightsquigarrow we still expect contraction, but on \mathcal{M} only \mathcal{M} is the set of the

How to quantify contraction

How to quantify contraction

 \rightsquigarrow we want to find posterior contraction rates

$$\mathbb{E}_{(x_{i},y_{i})^{i,i,d}P_{0}}\Pi\left[\left\|f-f_{0}\right\|_{L^{2}(p_{0})}^{2}\left|\mathbb{X}^{n}\right]=\mathcal{O}\left(\varepsilon_{n}^{2}\right)$$

where

How to quantify contraction

 \rightsquigarrow we want to find posterior contraction rates

$$\mathbb{E}_{(x_{i},y_{i}) \stackrel{i.i.d}{\sim} P_{0}} \Pi \left[\left\| f - f_{0} \right\|_{L^{2}(p_{0})}^{2} \left| \mathbb{X}^{n} \right] = \mathcal{O} \left(\varepsilon_{n}^{2} \right)$$

where

• ε_n = some rate of convergence

How to quantify contraction

 \rightsquigarrow we want to find posterior contraction rates

$$\mathbb{E}_{(x_{i},y_{i}) \stackrel{i.i.d}{\sim} P_{0}} \Pi \left[\left\| f - f_{0} \right\|_{L^{2}(p_{0})}^{2} \left| \mathbb{X}^{n} \right] = \mathcal{O} \left(\varepsilon_{n}^{2} \right)$$

where

- ε_n = some rate of convergence
- P₀(dxdy) = p₀(x)μ(dx)N(dy|f₀(x), σ²) true frequentist distribution

How to quantify contraction

 \rightsquigarrow we want to find posterior contraction rates

$$\mathbb{E}_{(x_i, y_i) \stackrel{i.i.d}{\sim} P_0} \Pi \left[\| f - f_0 \|_{L^2(p_0)}^2 | \mathbb{X}^n \right] = \mathcal{O} \left(\varepsilon_n^2 \right)$$

where

- ε_n = some rate of convergence
- P₀(dxdy) = p₀(x)μ(dx)N(dy|f₀(x), σ²) true frequentist distribution
- $||f f_0||^2_{L^2(p_0)} = \int_{\mathcal{M}} |f(x) f_0(x)|^2 p_0(x)\mu(dx)$ choice of metric

• mean zero :
$$f \sim GP(0, K), K = a$$
 kernel over \mathcal{M} or $\mathbb{R}^D \rightsquigarrow K(x, y) = \mathbb{E}(f(x)f(y))$

- mean zero : $f \sim GP(0, K), K = a$ kernel over \mathcal{M} or $\mathbb{R}^D \rightsquigarrow K(x, y) = \mathbb{E}(f(x)f(y))$
- we usually need extra functional analytic properties on the process in order to prove asymptotic properties → "gaussian random element" : fine in what follows

- mean zero : $f \sim GP(0, K), K = a$ kernel over \mathcal{M} or $\mathbb{R}^D \rightsquigarrow K(x, y) = \mathbb{E}(f(x)f(y))$
- we usually need extra functional analytic properties on the process in order to prove asymptotic properties → "gaussian random element" : fine in what follows
- key : with *f* comes an RKHS $\mathbb{H} = \text{completion of}$ $\left\{\sum_{i=1}^{p} a_i K(x_i, \cdot) : p \ge 1, a_i \in \mathbb{R}, x_i \in \mathcal{X}\right\}$ with $\langle K(x, \cdot), K(y, \cdot) \rangle_{\mathbb{H}} = K(x, y)$ together with f_0 , \mathbb{H} essentially dictates the contraction rate

idea : if f_0 is "well approximated" by elements of \mathbb{H} with controlled norms $+ \mathbb{H}$ is not too "funky" then contraction happens with good rate

idea : if f_0 is "well approximated" by elements of \mathbb{H} with controlled norms $+ \mathbb{H}$ is not too "funky" then contraction happens with good rate

Two parts in the proof (inspired from Van der Vaart & Van Zanten [4]
idea : if f_0 is "well approximated" by elements of \mathbb{H} with controlled norms $+ \mathbb{H}$ is not too "funky" then contraction happens with good rate

Two parts in the proof (inspired from Van der Vaart & Van Zanten [4])

we prove a contraction rate wrt

$$\|f - f_0\|_n^2 = \frac{1}{n} \sum_{i=1}^n |f(x_i) - f_0(x_i)|^2$$

idea : if f_0 is "well approximated" by elements of \mathbb{H} with controlled norms $+ \mathbb{H}$ is not too "funky" then contraction happens with good rate

Two parts in the proof (inspired from Van der Vaart & Van Zanten [4])

we prove a contraction rate wrt

$$||f - f_0||_n^2 = \frac{1}{n} \sum_{i=1}^n |f(x_i) - f_0(x_i)|^2$$

 assuming Holder continuity for f₀ + proving that our prior processes are a posteriori essentially supported on functions with Holder norms "not too big" + a concentration inequality we extrapolate

$$\frac{1}{n}\sum_{i=1}^{n}|f(x_i)-f_0(x_i)|^2=\mathcal{O}(\varepsilon_n^2)\rightsquigarrow \|f-f_0\|_{L^2(p_0)}^2=\mathcal{O}(\varepsilon_n^2)$$

Intrinsic Matérn process : Laplace-Beltrami operator

Intrinsic Matérn process : Laplace-Beltrami operator

• Riemannian metric on $\mathcal{M} \rightsquigarrow$ notion of gradient ∇f for every $f \in \mathcal{D}(\mathcal{M})$

Intrinsic Matérn process : Laplace-Beltrami operator

- Riemannian metric on $\mathcal{M} \rightsquigarrow$ notion of gradient ∇f for every $f \in \mathcal{D}(\mathcal{M})$
- define the Laplacian operator :

$$orall f \in \mathcal{D}\left(\mathcal{M}
ight), \int_{\mathcal{M}} \Delta(f) f d\mu = \int_{\mathcal{M}} \left|
abla f
ight|^2 d\mu$$

 \rightsquigarrow generalizes $-\Delta(f)$ in \mathbb{R}^D

Intrinsic Matérn process : Laplace-Beltrami operator

- Riemannian metric on $\mathcal{M} \rightsquigarrow$ notion of gradient ∇f for every $f \in \mathcal{D}(\mathcal{M})$
- define the Laplacian operator :

$$orall f \in \mathcal{D}\left(\mathcal{M}
ight), \int_{\mathcal{M}} \Delta(f) f d\mu = \int_{\mathcal{M}} \left|
abla f
ight|^2 d\mu$$

 \rightsquigarrow generalizes $-\Delta(f)$ in \mathbb{R}^D

• Then :

$$L^{2} = L^{2}(\mathcal{M}, \mu) = \bigoplus_{j \geq 1} \mathcal{H}_{j}, \mathcal{H}_{j} = ker(\Delta - \lambda_{j}I_{L^{2}})$$

 $\lambda_{j} \geq 0, \mathcal{H}_{j} \subset \mathcal{D}\left(\mathcal{M}
ight), \textit{dim}\left(\mathcal{H}_{j}
ight) < \infty$

 \rightsquigarrow notion of frequencies/Laplace-Fourier transform

Intrinsic Matern process

Intrinsic Matern process

 $\mathcal{M} = \mathsf{known}$

Intrinsic Matern process

$\mathcal{M} = \mathsf{known}$

$$f = \sum_{j \ge 0} (1 + \lambda_j)^{-\frac{s+d/2}{2}} Z_j u_j, Z_j \stackrel{i.i.d}{\sim} \mathcal{N}(0, 1) \rightsquigarrow \text{a Gaussian process}$$

Intrinsic Matern process

 $\mathcal{M} = \mathsf{known}$

$$f = \sum_{j \ge 0} \left(1 + \lambda_j\right)^{-\frac{s+d/2}{2}} Z_j u_j, Z_j \stackrel{i.i.d}{\sim} \mathcal{N}\left(0, 1\right) \rightsquigarrow \text{a Gaussian process}$$

$$\mathbb{H}=H^{s+d/2}\left(\mathcal{M}\right)\subset L^{2}\left(\mathcal{M}\right)$$

Intrinsic Matern process

 $\mathcal{M} = \mathsf{known}$

$$f = \sum_{j \ge 0} (1 + \lambda_j)^{-\frac{s+d/2}{2}} Z_j u_j, Z_j \stackrel{i.i.d}{\sim} \mathcal{N}(0, 1) \rightsquigarrow \text{a Gaussian process}$$

$$\mathbb{H}=H^{s+d/2}\left(\mathcal{M}\right)\subset L^{2}\left(\mathcal{M}\right)$$

$$\|g\|_{H^{s+d/2}(\mathcal{M})}^2 = \sum_{j\geq 0} \left(1+\lambda_j\right)^{s+d/2} \langle u_j|g\rangle_{L^2(\mathcal{M})}^2$$

<ロト <回ト < 目ト < 目ト < 目ト 目 の Q (~ 13/24

Intrinsic Matern process

 $\mathcal{M} = \mathsf{known}$

$$f = \sum_{j \ge 0} (1 + \lambda_j)^{-\frac{s+d/2}{2}} Z_j u_j, Z_j \stackrel{i.i.d}{\sim} \mathcal{N}(0, 1) \rightsquigarrow \text{a Gaussian process}$$

$$\mathbb{H}=H^{s+d/2}\left(\mathcal{M}\right)\subset L^{2}\left(\mathcal{M}\right)$$

$$\|g\|_{H^{s+d/2}(\mathcal{M})}^2 = \sum_{j\geq 0} \left(1+\lambda_j\right)^{s+d/2} \langle u_j|g\rangle_{L^2(\mathcal{M})}^2$$

why "Matern" ? \rightsquigarrow because the Matern GP in \mathbb{R}^d also has an RKHS isometric to $H^{s+d/2}(\mathbb{R}^d)$ + same description as solutions of SPDEs

Posterior contraction

Posterior contraction

proof in action :

Posterior contraction

proof in action :

f₀ ∈ B^β_{∞∞} (M) ∩ H^β (M) ⇒ we can control the rate of approximation of f₀ by elements of ℍ = H^{s+d/2} (M) in sup norm

Posterior contraction

proof in action :

- f₀ ∈ B^β_{∞∞} (M) ∩ H^β (M) ⇒ we can control the rate of approximation of f₀ by elements of ℍ = H^{s+d/2} (M) in sup norm
- the space H^{s+d/2} (M) is not too "funky" : follows for instance by chart description of Sobolev spaces and known results on R^d

Posterior contraction

proof in action :

- f₀ ∈ B^β_{∞∞} (M) ∩ H^β (M) ⇒ we can control the rate of approximation of f₀ by elements of ℍ = H^{s+d/2} (M) in sup norm
- the space H^{s+d/2} (M) is not too "funky" : follows for instance by chart description of Sobolev spaces and known results on R^d
- we show in our work that f has a posteriori a Holder norm that is "not too big"

Posterior contraction

proof in action :

- $f_0 \in B_{\infty\infty}^{\beta}(\mathcal{M}) \cap H^{\beta}(\mathcal{M}) \implies$ we can control the rate of approximation of f_0 by elements of $\mathbb{H} = H^{s+d/2}(\mathcal{M})$ in sup norm
- the space H^{s+d/2} (M) is not too "funky" : follows for instance by chart description of Sobolev spaces and known results on R^d
- we show in our work that f has a posteriori a Holder norm that is "not too big"

in practice : the **sum needs to be truncated** (handled in our work) + **eigendecomposition needs to be computed** : either algebraically (for manifolds with symmetries : see Azangulov & al [2]) or numerically

Posterior contraction

proof in action :

- $f_0 \in B_{\infty\infty}^{\beta}(\mathcal{M}) \cap H^{\beta}(\mathcal{M}) \implies$ we can control the rate of approximation of f_0 by elements of $\mathbb{H} = H^{s+d/2}(\mathcal{M})$ in sup norm
- the space H^{s+d/2} (M) is not too "funky" : follows for instance by chart description of Sobolev spaces and known results on R^d
- we show in our work that f has a posteriori a Holder norm that is "not too big"

in practice : the **sum needs to be truncated** (handled in our work) + **eigendecomposition needs to be computed** : either algebraically (for manifolds with symmetries : see Azangulov & al [2]) or numerically \rightsquigarrow final rate : $\forall \beta \land s > d/2, \varepsilon_n \approx n^{-\frac{\beta \land s}{2s+d}}$

Extrinsic Matern process

Extrinsic Matern process

typically : $\mathcal{M} \subset \mathbb{R}^D$ = unknown

Extrinsic Matern process

typically : $\mathcal{M} \subset \mathbb{R}^{D} =$ unknown • g =standard Matern GP on $\mathbb{R}^{D} \implies \mathbb{H}_{g} = H^{s+D/2}(\mathbb{R}^{D})$

Extrinsic Matern process

typically : $\mathcal{M} \subset \mathbb{R}^D$ = unknown

•
$$g=$$
 standard Matern GP on $\mathbb{R}^{D}\implies \mathbb{H}_{g}=H^{s+D/2}\left(\mathbb{R}^{D}
ight)$

•
$$f = g_{|\mathcal{M}|} =$$
 theoretical object

Extrinsic Matern process

typically : $\mathcal{M} \subset \mathbb{R}^D$ = unknown

•
$$g = \text{standard Matern GP on } \mathbb{R}^D \implies \mathbb{H}_g = H^{s+D/2}\left(\mathbb{R}^D\right)$$

•
$$f = g_{|\mathcal{M}|} =$$
 theoretical object

Theorem

$$\mathbb{H}_{f} \simeq H^{s+d/2}\left(\mathcal{M}\right)$$
 i.e. $\mathbb{H}_{f} \equiv H^{s+d/2}\left(\mathcal{M}\right)$ and

$$\exists C \geq 1, \forall g \in \mathbb{H}_{f}, C^{-1} \left\| g \right\|_{\mathbb{H}_{f}} \leq \left\| f \right\|_{H^{s+d/2}(\mathcal{M})} \leq C \left\| g \right\|_{\mathbb{H}_{f}}$$

Theorem

$$\mathbb{H}_{f} \simeq H^{s+d/2}\left(\mathcal{M}\right)$$
 i.e. $\mathbb{H}_{f} \equiv H^{s+d/2}\left(\mathcal{M}\right)$ and

$$\exists \mathcal{C} \geq 1, orall g \in \mathbb{H}_{f}, \mathcal{C}^{-1} \left\| g
ight\|_{\mathbb{H}_{f}} \leq \left\| f
ight\|_{\mathcal{H}^{s+d/2}(\mathcal{M})} \leq \mathcal{C} \left\| g
ight\|_{\mathbb{H}_{f}}$$

Proof. 1) Fact :

Theorem

$$\mathbb{H}_{f} \simeq H^{s+d/2}\left(\mathcal{M}\right)$$
 i.e. $\mathbb{H}_{f} \equiv H^{s+d/2}\left(\mathcal{M}\right)$ and

$$\exists \mathcal{C} \geq 1, orall g \in \mathbb{H}_{f}, \mathcal{C}^{-1} \left\| g
ight\|_{\mathbb{H}_{f}} \leq \left\| f
ight\|_{\mathcal{H}^{s+d/2}(\mathcal{M})} \leq \mathcal{C} \left\| g
ight\|_{\mathbb{H}_{f}}$$

Proof. 1) Fact :

$$\mathbb{H}_{f} = \left\{ g = h_{|\mathcal{M}} : h \in \mathbb{H}_{g} \right\}, \left\| g \right\|_{\mathbb{H}_{f}} = \inf_{g = h_{|\mathcal{M}}, h \in \mathbb{H}_{g}} \left\| h \right\|_{\mathbb{H}_{g}}$$

Theorem

$$\mathbb{H}_{f} \simeq H^{s+d/2}\left(\mathcal{M}\right)$$
 i.e. $\mathbb{H}_{f} \equiv H^{s+d/2}\left(\mathcal{M}\right)$ and

$$\exists \mathcal{C} \geq 1, orall g \in \mathbb{H}_{f}, \mathcal{C}^{-1} \left\| g
ight\|_{\mathbb{H}_{f}} \leq \left\| f
ight\|_{\mathcal{H}^{s+d/2}(\mathcal{M})} \leq \mathcal{C} \left\| g
ight\|_{\mathbb{H}_{f}}$$

Proof. 1) Fact :

$$\mathbb{H}_{f} = \left\{g = h_{|\mathcal{M}} : h \in \mathbb{H}_{g}\right\}, \left\|g\right\|_{\mathbb{H}_{f}} = \inf_{g = h_{|\mathcal{M}}, h \in \mathbb{H}_{g}} \left\|h\right\|_{\mathbb{H}_{g}}$$

$$\iff \mathbb{H}_{f} = \left\{ g = h_{|\mathcal{M}} : h \in H^{s+D/2}\left(\mathbb{R}^{D}\right) \right\}$$
$$\|g\|_{\mathbb{H}_{f}} = \inf_{\substack{g = h_{|\mathcal{M}}, h \in H^{s+D/2}\left(\mathbb{R}^{D}\right)}} \|h\|_{H^{s+D/2}\left(\mathbb{R}^{D}\right)}$$

16 / 24

Proof.

2) But actually by Grosse & Schneider [3]

$$Tr: f \in H^{s+D/2}\left(\mathbb{R}^{D}\right) \to f_{|\mathcal{M}} \in H^{s+d/2}\left(\mathcal{M}\right) = \text{bounded}$$

and we can construct a bounded right inverse $Tr \circ Ex = I_{H^{s+d/2}(\mathcal{M})}$

$$Ex:g\in H^{s+d/2}\left(\mathcal{M}
ight)\mapsto Ex\left(g
ight)\in H^{s+D/2}\left(\mathbb{R}^{D}
ight)$$

Consequence

Consequence

 $\textcircled{0} \implies \text{the RKHS of } f_{\mid \mathcal{M}} \text{ is norm equivalent to the one of the intrinsic process } !$

Consequence

- $\textcircled{0} \implies \text{the RKHS of } f_{\mid \mathcal{M}} \text{ is norm equivalent to the one of the intrinsic process } !$

Consequence

- $\textcircled{0} \implies \text{the RKHS of } f_{\mid \mathcal{M}} \text{ is norm equivalent to the one of the intrinsic process } !$

in particular : the restriction of a Euclidean Matern process to a submanifold $\mathcal{M} \subset \mathbb{R}^D$ of dimension d < D has a contraction rate depending exponentially in d (not D !)

Extension to Besov priors

• sometimes : Holder/Sobolev assumptions are too restrictive

Extension to Besov priors

- sometimes : Holder/Sobolev assumptions are too restrictive
- spatially inhomogeneous functions are known to be more adequatly represented by some Besov spaces
 B^s_{pp} (M), p ∈ [1,2) → inverse problems, imaging..

Extension to Besov priors

- sometimes : Holder/Sobolev assumptions are too restrictive
- spatially inhomogeneous functions are known to be more adequatly represented by some Besov spaces
 B^s_{pp} (M), p ∈ [1, 2) → inverse problems, imaging..
- actually Grosse & Schneider [3] give $Tr: B_{pp}^{s+D/p}(\mathbb{R}^D) \rightarrow B_{pp}^{s+d/p}(\mathcal{M}), Ex: B_{pp}^{s+d/p}(\mathcal{M}) \rightarrow B_{pp}^{s+D/p}(\mathbb{R}^D)$
we can mimick the approach of GPs and RKHS using the "p-exponential priors" of Agapiou & al [1]:

$$f = \sum_{j \ge 1} a_j Z_j u_j, Z_j \overset{i.i.d}{\sim} f_p$$

where $f_p(x) \propto e^{-|x|^p/p}$, $a_j \in \mathbb{R}$, $(u_j)_{j \ge 1}$ = Schauder basis of $\mathcal{C}(\mathcal{X})$ (here $\mathcal{X} = [0, 1]^D$)

 we can mimick the approach of GPs and RKHS using the "p-exponential priors" of Agapiou & al [1]:

$$f = \sum_{j \ge 1} a_j Z_j u_j, Z_j \overset{i.i.d}{\sim} f_p$$

where $f_p(x) \propto e^{-|x|^p/p}$, $a_j \in \mathbb{R}$, $(u_j)_{j \ge 1}$ = Schauder basis of $\mathcal{C}(\mathcal{X})$ (here $\mathcal{X} = [0, 1]^D$)

• problem : the restriction of a p-exponential prior is not necessarily p-exponential \rightsquigarrow to conclude we consider $(u_j) \iff (\psi_{jk})_{j \ge 1, k \le 2^{jD}} =$ regular wavelet basis

Theorem

In the fixed design regression model, if $f_0 \in B^s_{pp}\left(\mathcal{M}
ight), s > d/p, p \in [1,2]$ and

$$f = (n\epsilon_n^2)^{-1/p} \sum_{j \ge 1} 2^{-j(s-d/p+D/2)} \sum_{k=1}^{2^{jD}} \xi_{jk} \psi_{jk}, \xi_{jk} \overset{i.i.d}{\sim} f_p$$

then

$$\Pi\left[\left\|f-f_{0}\right\|_{n}>M\epsilon_{n}\left|\mathbb{X}^{n}\right]\xrightarrow[n\to\infty]{P_{0}^{\infty}}0$$

for M > 0 large enough and $\epsilon_n \propto n^{-\frac{s}{2s+d}}$.

idea : even if $f_{\mid \mathcal{M}}$ is not a p-exponential process, we can always consider

$$p_{\#}f = (n\epsilon_n^2)^{-1/p} \sum_{j\geq 1} 2^{-j(s-d/p+D/2)} \sum_{k\in I_j} \xi_{jk} \psi_{jk}$$

where $I_j = \# \{ 1 \le k \le 2^{jD} : supp(\psi_{jk}) \cap \mathcal{M} \ne \emptyset \}$, which is always p-exponentially distributed ; and using $\#I_j \simeq 2^{jd} << 2^{jD} +$ trace/extension theorem allows us to replace D by d in the rate

Conclusion & future work

Conclusion & future work

Conclusion & future work

Take home message :

• two ways to construct priors for functions on manifolds : intrinsically or extrinsically

Conclusion & future work

- two ways to construct priors for functions on manifolds : intrinsically or extrinsically
- as we saw : in somes cases the two methods may have similar rates of contraction : differences stem from the constants

Conclusion & future work

- two ways to construct priors for functions on manifolds : intrinsically or extrinsically
- as we saw : in somes cases the two methods may have similar rates of contraction : differences stem from the constants However

Conclusion & future work

- two ways to construct priors for functions on manifolds : intrinsically or extrinsically
- as we saw : in somes cases the two methods may have similar rates of contraction : differences stem from the constants However
 - we do see differences of performance in practice

Conclusion & future work

Take home message :

- two ways to construct priors for functions on manifolds : intrinsically or extrinsically
- as we saw : in somes cases the two methods may have similar rates of contraction : differences stem from the constants

However

- we do see differences of performance in practice
- geometrical/intrinsic methods tend to perform better in the **low data regime**

Conclusion & future work

Take home message :

- two ways to construct priors for functions on manifolds : intrinsically or extrinsically
- as we saw : in somes cases the two methods may have similar rates of contraction : differences stem from the constants

However

- we do see differences of performance in practice
- geometrical/intrinsic methods tend to perform better in the **low data regime**

Possible extensions

Conclusion & future work

Take home message :

- two ways to construct priors for functions on manifolds : intrinsically or extrinsically
- as we saw : in somes cases the two methods may have similar rates of contraction : differences stem from the constants

However

- we do see differences of performance in practice
- geometrical/intrinsic methods tend to perform better in the **low data regime**

Possible extensions

• similar result for the square exponential kernel ?

Conclusion & future work

Take home message :

- two ways to construct priors for functions on manifolds : intrinsically or extrinsically
- as we saw : in somes cases the two methods may have similar rates of contraction : differences stem from the constants

However

- we do see differences of performance in practice
- geometrical/intrinsic methods tend to perform better in the **low data regime**

Possible extensions

- similar result for the square exponential kernel ?
- adaptivity : ok for intrinsic, what about extrinsic ?

Thank you !

Established by the European Commission

- Sergios Agapiou, Masoumeh Dashti, and Tapio Helin. Rates of contraction of posterior distributions based on *p*-exponential priors, 2020.
- Iskander Azangulov, Andrei Smolensky, Alexander Terenin, and Viacheslav Borovitskiy.
 Stationary kernels and gaussian processes on lie groups and their homogeneous spaces i: the compact case, 2022.
 - Grosse Nadine and Cornelia Schneider.

Sobolev spaces on riemannian manifolds with bounded geometry: General coordinates and traces, 2013.

Aad van der Vaart and Harry van Zanten.

Information rates of nonparametric gaussian process methods. *Journal of Machine Learning Research*, 12(60):2095–2119, 2011.