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General context
Andra : French National Agency for Radioactive Waste

Management

”Taking charge of radioactive waste produced by past and current
generations to render it secure for future generations ”Environnement du stage – Contexte – Objectifs – Méthode – Stratégie envisagée – Applications numériques – Conclusions – Perspectives

Location of Andra sites* 
Cigéo Project*

Radioactive waste 
classification*

*Sources Andra
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General context

Internship environment – Context – Objectives – Method – Strategy envisaged – Numerical applications – Conclusions – Perspectives

Context

Solving chemical reactions with PHREEQC, a computer program which takes

𝒙 as inputs and gives output 𝒚 such that 𝒚 = 𝑓(𝒙) where 𝑓 is an unknown function

To model the evolution of Cigéo components and the different interactions with their 

environment

Problem : time-consuming and costly simulations

First solution : deep learning with a deep neural network exploiting 

a set of observations generated with PHREEQC

Second solution : Implementation of a statistical method for estimating 

functions in a multivariate nonparametric regression model based on an

adaptive knot selection for B-splines.

Problem : complex calibration of parameters, not yet optimized

IDEA : to estimate 𝒇 (« black box »)
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Definition of B-splines of order M
Let t = (t1, . . . , tK ) be a set of K points called knots. We define the augmented knot
sequence τ such that:

τ1 = . . . = τM = xmin,

τj+M = tj , j = 1, . . . ,K ,
xmax = τK+M+1 = . . . = τK+2M ,

τ = (τ1, . . . , τK+2M) =
(
xmin, . . . , xmin︸ ︷︷ ︸

M times

, t1, . . . , tK︸ ︷︷ ︸
t

, xmax , . . . , xmax︸ ︷︷ ︸
M times

)
,

B-splines are defined by De Boor (1978) by the following recursion: Denoting by
Bi,m(x) the ith B-spline basis function of order m for the knot sequence τ with m ≤ M:

Definition of B-splines by recursion

Bi,1(x) =
{

1 if τi ≤ x < τi+1

0 otherwise
for i = 1, . . . ,K + 2M − 1,

and for m ≤ M,
Bi,m(x) = x − τi

τi+m−1 − τi
Bi,m−1(x) + τi+m − x

τi+m − τi+1
Bi+1,m−1(x),

for i = 1, . . . , (K + 2M −m).
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Visualization of B-splines of order M
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(a) B-spline basis of order M = 1
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(b) B-spline basis of order M = 2
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(c) B-spline basis of order M = 3
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(d) B-spline basis of order M = 4
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Nonparametric method to estimate function of one or two
variables (1)

Yi = f (xi ) + εi , 1 ≤ i ≤ n, εi
iid∼ N (0, σ2)

where the xi are observation points which belong to a compact set of Rd , d ≥ 1.
Approach : GLOBER inspired by MARS method introduced by Friedman (1991),
*d = 1 :

1 From the observation points, selection of specific points called knots by using
the (q + 1)th order generalized lasso defined by Tibshirani and Taylor (2011),

2 Definition of a B-spline basis of a certain order M,
3 Estimation of a one-dimensional function (d = 1)

K+M∑
i=1

γiBi,M(x), (1)

where K is the number of knots defining the B-spline basis.
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Nonparametric method to estimate function of one or two
variables (2)

*d = 2 :
1 From the observation points, selection of knots for each dimension by fixing one

dimension at a time so can be rewritten as an estimation problem in the
one-dimensional framework (d = 1),

2 Definition of a B-spline basis for each dimension,
3 Estimation of a two-variable function (d = 2)

Q1∑
i=1

Q2∑
j=1

γij B1,i,M(x1)B2,j,M(x2), (2)

where B1,i,M and B2,j,M are the B-spline basis of order M for the first and second
dimension, respectively. In (2), Q1 = q + K1 + 1, Q2 = q + K2 + 1 with K1 and K2 the
number of knots defined in the B-spline basis of the first and second variables,
respectively and M = q + 1.
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Selection of the knot set (d = 1)
Generalized lasso (Tibshirani et al, 2011)

β̂(λ ) = argmin
β∈Rn

{||Y− β||22 + λ ||Dβ||1} (3)

where ||y ||22 =
∑n

i=1 y 2
i for y = (y1, . . . , yn) and ||u||1 =

∑m
i=1 |ui | for u = (u1, . . . , um),

λ > 0 and D ∈ Rm×n is a specified penalty matrix depending on the order of
differentiation (q + 1).

Let Λ = (λ1, . . . , λk ) be a grid of penalization parameters λi . We define a(λ ) by:

a(λ ) = D · β̂(λ ), λ ∈ Λ
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1 t̂1 x

+ +
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+

+
+

+
+

y

D =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . .
...

0 0 . . . −1 1

 , β̂(λ3) =
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3.6
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, a(λ3) =



0
0
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0
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.

Which penalization parameter λ to choose to get an optimal estimator of f ?
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Selection criterion of the parameter λ (d = 1)

EBIC criterion defined by Chen and Chen (2008)

EBIC(λ ) = SS(λ ) + (q + Kλ + 1) log n + 2 log
(

q + Kmax + 1
q + Kλ + 1

)
, (4)

where Kmax = n and SS(λ ) is the sum of squares defined by:

SS(λ ) = ‖Y− Ŷ(λ )‖2
2 , (5)

where
Ŷ(λ ) = B(λ )γ̂,

with γ̂ and B(λ ) a n × (q + Kλ + 1) matrix having as ith column (Bi,M(xk ))1≤k≤n, i
belonging to {1, . . . , q + Kλ + 1}.

Final estimator of f

f̂ (x) = f̂λEBIC (x), (6)

where f̂λ (x) =
∑q+Kλ +1

i=1 γ̂iBi,M(x) and

λEBIC = argmin
λ∈Λ

{EBIC(λ )}. (7)
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One-dimensional framework for the knot selection
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Figure 2: One-dimensional framework

10 / 24



Context Method Metrics Results Discussion and perspectives References

Two-dimensional framework for the knot selection
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Selection of knot sets (d = 2)

Equivalent sets of knots – First dimension

Λ̃1 =
{

λ̃1,1, . . . , λ̃1,smin1

}
and smin1 = min

1≤i≤n2
si , (8)

λ̃1,k =
(

λ(1,i),k
)

1≤i≤n2
, 1 ≤ k ≤ smin1 . (9)

In (9), λ̃1,k can be seen as the vector of parameters which penalize (3) at an
equivalent strength for each fixed value of x2.

Equivalent sets of knots – Second dimension

Λ̃2 =
{

λ̃2,1, . . . , λ̃2,smin2

}
and λ̃2,` =

(
λ(2,i),`

)
1≤i≤n1

, 1 ≤ ` ≤ smin2 .

Let us consider two generic penalization parameters λ̃1 belonging to Λ̃1 and λ̃2
belonging to Λ̃2.

Which combination of penalization parameters (λ̃1, λ̃2) to choose to get an optimal
estimator of f ?
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Selection criterion of the parameters (λ̃1, λ̃2) (d = 2)

EBIC criterion

EBIC
(

λ̃1, λ̃2

)
= SS

(
λ̃1, λ̃2

)
+ Q̃1Q̃2 log n + 2 log

(
(q + n1 + 1)(q + n2 + 1)

Q̃1Q̃2

)
. (10)

where Q̃1 = q + K̃
λ1

+ 1 and Q̃2 = q + K̃
λ2

+ 1 and SS
(

λ̃1, λ̃2

)
is the sum of squares.

Final estimator of f

f̂ (x1, x2) = f̂̃
λ1,EBIC ,̃λ2,EBIC

(x1, x2),

with f̂̃
λ1 ,̃λ2

defined as:

f̂̃
λ1 ,̃λ2

(x) = f̂̃
λ1 ,̃λ2

(x1, x2) =
Q̃1∑
i=1

Q̃2∑
j=1

γ̂ij B1,i,M(x1)B2,j,M(x2). (11)
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Metrics

One-dimensional form

Normalized MAE(λ ) = 1
N

N∑
k=1

∣∣∣f (xk )− f̂λ (xk )
∣∣∣

fmax − fmin
. (12)

Normalized sup norm(λ ) = max
1≤k≤N

∣∣∣f (xk )− f̂λ (xk )
∣∣∣

fmax − fmin
, (13)

where f̂λ is defined in (1). In (13), N (N > n) is the cardinality of the set of
evenly-spaced points {x1, . . . , xN} of [0, 1] which contains the observation points
x1, . . . , xn as well as additional points where f has not been observed.
fmin and fmax denote the minimum and maximum values of f evaluated on
{x1, . . . , xN}, respectively.

Two-dimensional form

(12) and (13) with λ becomes λ̃1 and λ̃2 and f̂λ is replaced by f̂̃
λ1 ,̃λ2

.
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Results on geochemical applications (d = 1)

Function to estimate: Simple case of precipitation, we consider here one input (Spa)
and one output (Amount of Salt) Savino et al. (2022). Real evaluations of f have
been obtained with PHREEQC.
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Figure 4: Illustration of the method over an
increasing number of observations
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Figure 5: Statistic performance of our method
(GLOBER) and of the state-of-the-art
methods.The dashed (resp. solid) line displays the
average of the Normalized Sup Norm (resp.
Normalized MAE) values obtained from 10
replications.
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Results on geochemical applications (d = 2)
Function to estimate: Simple case of precipitation, we consider here two inputs (Ca
and Mg) and one output (Amount of Dolomite). Real evaluations of f have been
obtained with PHREEQC.
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Figure 6: Illustration of the method over an
increasing number of observations
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Figure 7: Statistic performance of our method
(GLOBER) and of the state-of-the-art
methods.The dashed (resp. solid) line displays the
average of the Normalized Sup Norm (resp.
Normalized MAE) values obtained from 10
replications.
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Discussion and perspectives

New way of estimating univariate and bivariate functions with
B-splines
Application to the one and two-dimentional settings
Submitted article: M. E. Savino, C. Lévy-Leduc. A novel approach
for estimating functions in the multivariate setting based on
an adaptive knot selection for B-splines with an application to
a chemical system used in geoscience, arxiv:2306.00686, 2023.
Implementation of the method: R package glober available on the
CRAN, by using the genlasso R package (Arnold and Tibshirani,
2016).
Extension to higher dimensional settings and to general grid ongoing
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Definition of penalty matrix D

Case of evenly-spaced observations

D = Dtf ,q+1 = D0 · Dtf ,q q ≥ 0, (14)
with Dtf ,0 = IdRn , the identity matrix of Rn

D0 is the penalty matrix for the one-dimensional fused Lasso:

D0 =


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . . . . .
...

0 0 . . . −1 1

 .
Case of unevenly-spaced observations

D = ∆(q+1) = W(q+1) · D0 ·∆(q), q ≥ 0,

where ∆(0) = IdRn and W(q+1) is the diagonal weight matrix defined by:

W(q+1) = diag
(

1
(x(q+1)+1 − x(q+1))

,
1

(x(q+1)+2 − x(q+1)+1) , . . . ,
1

(xn − xn−1)

)
.
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Selection of the knot set (d = 1)

Let Λ = (λ1, . . . , λk ) be a grid of penalization parameters λi . We define a(λ ) by:

a(λ ) = D · β̂(λ ), λ ∈ Λ

Approach to find the selected knots associated to λ

t̂λ =
(̂
tj
)

j=1,...,Kλ

=
(
xpj

)
j=1,...,Kλ

, avec pj ∈ Pλ ,

where
Pλ = {`+ 1, a`(λ ) 6= 0 } et Kλ =

m∑
`=1

1{a`(λ ) 6= 0},

a`(λ ) denotes the `th component of a(λ ) and 1{A} = 1 if the event A holds and 0 if
not.
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Sum of square detailed for two-dimensional case

Definition of SS
(

λ̃1, λ̃2

)
SS
(

λ̃1, λ̃2

)
=
∥∥∥Y− Ŷ

(
λ̃1, λ̃2

)∥∥∥2

2
,

where
Ŷ
(

λ̃1, λ̃2

)
= B

(
λ̃1, λ̃2

)
γ̂, (15)

and B
(

λ̃1, λ̃2

)
is defined as:

B
(

λ̃1, λ̃2

)
= B

(
λ̃1

)
⊗ B

(
λ̃2

)
, (16)

E ⊗ F denoting the Kronecker product of the matrices E and F . In (16), B
(

λ̃1

)
is a

n1 × Q̃1 matrix having as ith column (B1,i,M(x1k ))1≤k≤n1
, i belonging to {1, . . . , Q̃1}

and B
(

λ̃2

)
is a n2 × Q̃2 matrix having as jth column (B2,j,M(x2`))1≤`≤n2

, j belonging

to {1, . . . , Q̃2}.
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State-of-the-art methods

Gaussian Processes (GP): squared exponential covariance
function, implementation by using scikit-learn Python package,
Multivariate Adaptive Regression Splines (MARS): interaction

terms are included, implementation by using earth R package,
Deep Neural Networks (DNNs): arbitrarily chosen since our
goal is not to optimize it:

2-hidden-layered structure composed of 10 neurons per layer
Activation function of the hidden layers: RELU function since it is
one of the most used functions.
Optimizer: stochastic gradient descent method Adam
Loss function: the Mean Squared Error (MSE).
Number of epochs: 300 epochs for functions of d = 1 and 50 epochs
for functions of d = 2 to avoid overfitting,

implementation by using keras R package.
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Suppplementary application for the two-dimensional
framework

Function to estimate: Simple case of precipitation, we consider here two inputs (Spa
and Spb) and one output (Amount of Halite). Real evaluations of f have been
obtained with PHREEQC.

100 observations 225 observations

900 observations 1600 observations

Figure 8: Illustration of the method over an
increasing number of observations
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Figure 9: Statistic performance of our method
(GLOBER) and of the state-of-the-art
methods.The dashed (resp. solid) line displays the
average of the Normalized Sup Norm (resp.
Normalized MAE) values obtained from 10
replications.
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