On the convergence of the HMC algorithm and NUTS sampler. Samuel Gruffaz

Introduction to the recent paper : « On the convergence of dynamic implementations of Hamiltonian Monte Carlo and No U-Turn Samplers », Alain Durmus, Samuel Gruffaz, Miika Kailas, Eero Saksman, Matti Vihola, July-2023

Bayesian Computational goals :

Compute $\int f d \pi$, denoting by f a test function and π a target distribution.

Monte Carlo (MC) :

Markov Chain Monte Carlo (MCMC) :

Metropolis Hasting algorithm (MH) :

Hamiltonian Monte Carlo (HMC) : [Duane and al, 1987]

State of the art

No U-Turn Sampler (NUTS) : [Hoffman and al, 2011]

Bayesian Computational goals :

Monte Carlo (MC) :

Compute $\int f d \pi$, denoting by f a test function and π a target distribution.

Given a sampling method for

Markov Chain Monte Carlo (MCMC) :

Metropolis Hasting algorithm (MH) :

Hamiltonian Monte Carlo (HMC) : [Duane and al, 1987]

State of the art

No U-Turn Sampler (NUTS) : [Hoffman and al, 2011]

or
$$\pi$$
 and $N \in \mathbb{N}^*$, $\int f d \pi \approx \sum_{i=1}^N f(X_i)/N$, $X_i \stackrel{i.i.d}{\sim} \pi$, $1 \le i \le N$.

Bayesian Computational goals :

Monte Carlo (MC) :

Compute $\int f d\pi$, denoting by f a test function and π a target distribution.

Given a sampling method for

Markov Chain Monte Carlo (MCMC) :

Metropolis Hasting algorithm (MH) :

Hamiltonian Monte Carlo (HMC) : [Duane and al, 1987]

State of the art

No U-Turn Sampler (NUTS) : [Hoffman and al, 2011]

Given a Markov Kernel K s.t. $\lim_{n \to \infty} ||K^n(x, \cdot) - \pi||_{TV} = 0, \quad x \in \mathbb{R}^d,$ and $(n_s, n_b, x_0) \in (\mathbb{N}^*)^2 \times \mathbb{R}^d$, then generate $X_i \sim K^{i \times n_s + n_b}(x_0, \cdot), \quad 1 \le i \le N.$

or
$$\pi$$
 and $N \in \mathbb{N}^*$, $\int f d \pi \approx \sum_{i=1}^N f(X_i)/N$, $X_i \stackrel{i.i.d}{\sim} \pi$, $1 \le i \le N$.

Hamiltonian Monte Carlo (HMC) : [Duane and al, 1987]

State of the art

No U-Turn Sampler (NUTS) : [Hoffman and al, 2011]

Compute $\int f d \pi$, denoting by f a test function and π a target distribution.

or
$$\pi$$
 and $N \in \mathbb{N}^*$, $\int f d \pi \approx \sum_{i=1}^N f(X_i)/N$, $X_i \stackrel{i.i.d}{\sim} \pi$, $1 \le i \le N$.

ov Kernel K s.t.
$$\lim_{n \to \infty} || K^n(x, \cdot) - \pi ||_{TV} = 0, \quad x \in \mathbb{R}^d,$$

 $\mathbb{N}^*)^2 \times \mathbb{R}^d$, then generate $X_i \sim K^{i \times n_s + n_b}(x_0, \cdot), \quad 1 \le i \le N.$

ven a *proposition kernel*
$$\tilde{K}$$
, at iteration n :
₊₁ ~ $\tilde{K}(\cdot | X_n), U_n \sim U([0,1])$, compute $\alpha_n(\tilde{X}_{n+1}, X_n)$.
ct, set $X_{n+1} = \tilde{X}_{n+1}$ if $U_n \leq \alpha_n$, otherwise set $X_{n+1} = X_n$.

[Hoffman and al, 2011]

Compute $\int f d\pi$, denoting by f a test function and π a target distribution.

or
$$\pi$$
 and $N \in \mathbb{N}^*$, $\int f d \pi \approx \sum_{i=1}^N f(X_i)/N$, $X_i \stackrel{i.i.d}{\sim} \pi$, $1 \le i \le N$.

ov Kernel K s.t.
$$\lim_{n \to \infty} || K^n(x, \cdot) - \pi ||_{TV} = 0, \quad x \in \mathbb{R}^d,$$

 $(\mathbb{N}^*)^2 \times \mathbb{R}^d$, then generate $X_i \sim K^{i \times n_s + n_b}(x_0, \cdot), \quad 1 \le i \le N.$

Given a *proposition kernel* \tilde{K} , at iteration n : 1. Generate $\tilde{X}_{n+1} \sim \tilde{K}(\cdot | X_n), U_n \sim U([0,1])$, compute $\alpha_n(\tilde{X}_{n+1}, X_n)$. 2. Accept or Reject, set $X_{n+1} = \tilde{X}_{n+1}$ if $U_n \leq \alpha_n$, otherwise set $X_{n+1} = X_n$.

Given the target **potential** $U = -\log \pi$ and its gradient ∇U , a stepsize h and a number of steps T, define $\tilde{K}_{h,T}$ by integrating a system of Hamiltonian equations using the leapfrog integrator.

Compute $\int f d\pi$, denoting by f a test function and π a target distribution.

or
$$\pi$$
 and $N \in \mathbb{N}^*$, $\int f d \pi \approx \sum_{i=1}^N f(X_i)/N$, $X_i \stackrel{i.i.d}{\sim} \pi$, $1 \le i \le N$.

w Kernel K s.t.
$$\lim_{n\to\infty} || K^n(x, \cdot) - \pi ||_{TV} = 0, \quad x \in \mathbb{R}^d,$$

w*)² × ℝ^d, then generate $X_i \sim K^{i \times n_s + n_b}(x_0, \cdot), \quad 1 \le i \le N.$

wen a *proposition kernel*
$$\tilde{K}$$
, at iteration n :
₊₁ ~ $\tilde{K}(\cdot | X_n), U_n \sim U([0,1])$, compute $\alpha_n(\tilde{X}_{n+1}, X_n)$.
ct, set $X_{n+1} = \tilde{X}_{n+1}$ if $U_n \leq \alpha_n$, otherwise set $X_{n+1} = X_n$

Given the target **potential** $U = -\log \pi$ and its gradient ∇U , a stepsize h and a number of steps T, define $\tilde{K}_{h,T}$ by integrating a system of Hamiltonian equations using the leapfrog integrator.

Given $(U, \nabla U)$ and a stepsize h, define K_h^U the NUTS kernel.

NUTS is used in **PyMC3**, **Stan** and **Turing**, widely used software for Bayesian computational statistics.

Other libraries use Gibbs sampling for its flexibility. (BUGS, JAGS)

NUTS is used in PyMC3, Stan and Turing, widely used software for Bayesian computational statistics.

Other libraries use Gibbs sampling for its flexibility. (BUGS, JAGS)

OK, in practice, everyone use **NUTS** when it is possible, but why does it work well ?

Litterature on the qualitative properties of HMC and NUTS.

Qualitative property	$\pi\text{-invariance}$ $\int K(x, .) d\pi = \pi$	$\lim_{n \to \infty} \ f \ _{n \to \infty}$
HMC T is fixed	[Duane and al, 1987]	[Du
NUTS Tvaries	Appendix of [Betancourt, 2017] Not reviewed	

Our contributions on the qualitative properties of HMC and NUTS.

Qualitative property	$\pi\text{-invariance}$ $\int K(x,.) d\pi = \pi$	$\lim_{n \to \infty} \ f \ _{n \to \infty}$
HMC T is fixed	[Duane and al, 1987]	Withou [Du
NUTS T varies	Appendix of [Betancourt, 2017] Not reviewed NEW ! + give a proof with a general formalism [Durmus and al, 2023]	By bou and the H or withou with mo c

Why this paper was not done before?

2

The study of NUTS is highly technical. We introduce a general formalism and explicit expressions.

NUTS relies on a stopping time $(q_0, p_0) \in (\mathbb{R}^d)^2 \mapsto S(a, q_0, p_0)$. Its regularity is hard to analyze.

> Theoretical properties are not very attractive. We try to stick to the practical situation framework.

Hamiltonian Monte Carlo

Define **potential energy** $U(q) = -\log(\pi(q))$ and **Hamiltonian** $H(q,p) = U(q) + p^{\top}p/2$ for any $(q,p) \in (\mathbb{R}^d)^2$.

Hamiltonian dynamics $(q(t), p(t)) \in (\mathbb{R}^d)^2$, for any $t \ge 0$. $\frac{dq(t)}{dt} = \nabla_p H(q(t), p(t)) = p(t)$ $\frac{dp(t)}{dt} = -\nabla_q H(q(t), p(t)) = -\nabla U(q(t))$

HMC algorithm (h, T)

At iteration t, Markov chain at state X_t :

- 1. Sample $P_0 \sim \mathcal{N}(0_d, I_d)$ and set (q(0), p(0))

(MH) 3. Sample
$$U^* \sim \mathcal{U}([0,1])$$
. If $U^* \leq \min \{1, e_1\}$

Hamiltonian dynamics related to a pendulum.

$$= (X_t, P_0)$$

2. Solve dynamics over time lengths T with the **leapfrog integrator using** (h, T) to get $\Phi_h^{(T)}(X_t, P_0) = (q_T, p_T)$. $\exp\left[H(q_0, p_0) - H(q_T, p_T)\right] \Big\}, \text{ set } X_{t+1} = q_T, \text{ otherwise set } X_{t+1} = X_t.$

Hamiltonian Monte Carlo

1. Sample $P_0 \sim \mathcal{N}(0_d, I_d)$ and set (q(0), p(0))

3. Sample $U^* \sim \mathcal{U}([0,1])$. If $U^* \leq \min \left\{ 1, \exp \left[H(q_0, p_0) - H(q_T, p_T) \right] \right\}$, set $X_{t+1} = q_T$, otherwise set $X_{t+1} = X_t$. (MH)

$$=(X_t,P_0)$$

2. Solve dynamics over time lengths T with the leapfrog integrator using (h, T) to get $\Phi_h^{(T)}(X_t, P_0) = (q_T, p_T)$.

The intuition behind the No U-Turn Sampler.

No U-turn criteria between T_1 and T_2 , by denoting $\Phi_h^{(j)}(q_0, p_0) = (q_j, p_j)$ for any $(q_0, p_0) \in (\mathbb{R}^d)^2$, $F_{q_0}^{T_1,T_2}(p_0) = (q_{T_2} - q_{T_1})^{\mathsf{T}} p_{T_1} < 0 \text{ or } (q_{T_2} - q_{T_1})^{\mathsf{T}} p_{T_2} < 0.$ Jor (q_{T_2}) p_6 q_6 $(q_6 - q_0)^T p_6 < 0$ q_6 q_6 q_9 q_9

We can not just take the last point p_6 before the U-turn to have the target invariance !

The intuition behind the No U-Turn Sampler.

No U-turn criteria between T_1 and T_2 , by denoting $\Phi_1^{(j)}(a_0, p_0) = (a_1, p_2)$ for any $(a_0, p_0) \in (\mathbb{R}^d)^2$.

or or

We can not just tak

 $F_{q_0}^{T_1,T_2}(p_0) = (q_{T_2} - |$ Stopping time regularity condition : For any $q \in \mathbb{R}^d$ the following set is dense, $\mathsf{F}_{a,-0} = \{ p \in \mathbb{R}^d : F_a^{T_1,T_2}(p) \neq 0, T_1, T_2 \in [-2^{K_m} + 1 : 2^{K_m} - 1]^2, T_1 \neq T_2 \}$

> A more « human » condition to satisfy the previous one : ∇U is L-lypschitz and the stepsize is bounded by $C/(L2^{K_m})$ with C > 0. π is gaussian and the stepsize is in $\mathbb{R}^*_+ \setminus \mathscr{H}$ with \mathscr{H} countable.

U is real-analytic and $\lim |\nabla^2 U(q)| = 0$

Introduction of Dynamic HMC kernels

$$\{Q_h(\cdot | J, q_0, p_0) : J \subset [-2^{K_m}, 2^{K_m}]$$

 $|, (q_0, p_0) \in (\mathbb{R}^d)^2 \}$

Dynamic HMC algorithm

Define the Dynamic HMC (P_h, Q_h) as the Markov chain $(Q_k)_{k \in \mathbb{N}}$ defined by the following steps that define Q_{k+1} given Q_k :

HMC case :

$$\begin{aligned} \mathsf{P}_{h}^{\mathrm{HMC}}(\{0,T\} \mid q_{0}, p_{0}) &= 1 \\ \mathsf{Q}_{h}^{\mathrm{HMC}}(\cdot \mid \{0,T\}, q_{0}, p_{0}) &= \left(1 \wedge \frac{\tilde{\pi}(\Phi_{h}^{(T)}(q_{0}, p_{0}))}{\tilde{\pi}(q_{0}, p_{0})}\right) \delta_{T}(\cdot \cdot) + \left(1 - 1 \wedge \frac{\tilde{\pi}(\Phi_{h}^{(T)}(q_{0}, p_{0}))}{\tilde{\pi}(q_{0}, p_{0})}\right) \delta_{0}(\cdot \cdot) \end{aligned}$$

1. Sample
$$P_{k+1} \sim \mathcal{N}(0_d, I_d)$$

- 2. Sample I_{k+1} with distribution $P_h(\cdot | Q_k, P_{k+1})$
- 3. Sample J_{k+1} with distribution $Q_h(\cdot | I_{k+1}, Q_k, P_{k+1})$
- 4. Set $Q_{k+1} = \operatorname{proj}_1 \left\{ \Phi_h^{J_{k+1}}(Q_k, P_{k+1}) \right\}$, where $\text{proj}_1 : (x, y) \in (\mathbb{R}^d)^2 \mapsto x \in \mathbb{R}^d$

where we denote by $\tilde{\pi}(q, p) \propto \exp(-H(q, p)) = \pi(q) \times \exp(-p^{\top}p/2)$

Dynamic HMC properties

General expression of the Dynamic HMC kernel for any $A \in \mathscr{B}(\mathbb{R}^d)$:

$$K_h(q_0, \mathsf{A}) = \int \mathcal{N}(p; \mathbf{0}_d, I_d)(p_0) \tilde{K}_h((q_0, p_0)) \tilde{K}$$

It is **not** a trivial extension of the HMC case $K_h(q_0, A)$

Proposition :

Assume that (P_h, Q_h) satisfy the **following equation** for any $(q_0, p_0) \in (\mathbb{R}^d)^2$, $J \subset \mathbb{Z}$:

$$\tilde{\pi}(q_0, p_0) \mathsf{P}_h\left(\mathsf{J} \,|\, q_0, p_0\right) = \sum_{j \in \mathbb{Z}} \mathbf{1}_\mathsf{J}(0) \tilde{\pi}\left(\Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{P}_h\left(\mathsf{J} + j \,|\, \Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{Q}_h\left(j \,|\, \mathsf{J} + j, \Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{P}_h\left(\mathsf{J} + j \,|\, \Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{Q}_h\left(j \,|\, \mathsf{J} + j, \Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{P}_h\left(\mathsf{J} + j \,|\, \Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{Q}_h\left(j \,|\, \mathsf{J} + j, \Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{P}_h\left(\mathsf{J} + j \,|\, \Phi_h^{(-j)}(q_0, p_0)\right) \mathsf{Q}_h\left(j \,|\, \mathsf{J} + j, \Phi_h^{$$

Then, K_h leaves the target measure π invariant

- p_0 , A)d p_0
- $\lambda_{n}(j | \mathsf{J}, q_{0}, p_{0}) \delta_{\text{proj}_{1}(\Phi_{h}^{(j)}(q_{0}, p_{0}))}(\mathsf{A})$

$$f(x) \neq \sum_{j \in \mathbb{Z}} \omega_j(q_0) \operatorname{K}_{h,j}^{\operatorname{HMC}}(q_0, \mathsf{A})$$

Dynamic HMC properties

Then, K_h leaves the target measure π invariant

$$\in \mathsf{J}, \mathsf{P}_{h}\left(\mathsf{J}+j \,|\, \Phi_{h}^{(-j)}(q_{0},p_{0})\right) = \mathsf{P}_{h}\left(\mathsf{J} \,|\, q_{0},p_{0}\right),$$

$$(q_0, p_0) \left(Q_h \left(j | J + j, \Phi_h^{(-j)}(q_0, p_0) \right) \right)$$

 $\tilde{\pi}(q_0, p_0) \mathbf{P}_h \left(\mathsf{J} \,|\, q_0, p_0 \right) = \sum \mathbf{1}_{\mathsf{J}}(0) \tilde{\pi} \left(\Phi_h^{(-j)}(q_0, p_0) \right) \mathbf{P}_h \left(\mathsf{J} + j \,|\, \Phi_h^{(-j)}(q_0, p_0) \right) \mathbf{Q}_h \left(j \,|\, \mathsf{J} + j, \Phi_h^{(-j)}(q_0, p_0) \right)$

NUTS' orbit selection kernel p_h

Scheme of the construction of the index set I_f in the Algorithm 1 presented in [Durmus and al, 2023].

1 1 Symmetry property : For any $(q_0, p_0) \in (\mathbb{R}^d)^2$, $J \subset \mathbb{Z}$ Explicit expression of p_h in the paper.

Binary tree enable fast practical recursive implementation.

$$\mathbb{Z} \text{ and } -j \in J, P_h\left(J+j \mid \Phi_h^{(-j)}(q_0, p_0)\right) = P_h\left(J \mid q_0, p_0\right)$$

Thank you again !

NUTS selection kernel q_h .

$$\bar{\mathbf{q}}_{h}(3,3 \mid \mathbf{I}, z_{0}) = (1 - 1 \wedge \frac{\pi_{4} + \pi_{5} + \pi_{6} + \pi_{7}}{\pi_{0} + \pi_{1} + \pi_{2} + \pi_{3}}) (1 - 1 \wedge \frac{\pi_{0} + \pi_{1}}{\pi_{2} + \pi_{3}}) (1 - 1 \wedge \frac{\pi_{2}}{\pi_{3}})$$

Litterature on the qualitative properties of HMC and NUTS.

Qualitative property	$\pi\text{-invariance}$ $\int K(x,.) d \pi = \pi$	$\lim_{n\to\infty} 1 $
HMC	By construction, with the MH mechanism. [Duane and al, 1987]	<i>U</i> contin ∇ by bouı [Du
NUTS	Less trivial to check, performed in the Appendix of [Betancourt, 2017] Not reviewed	

Our contributions on the qualitative properties of HMC and NUTS.

Qualitative property	$\pi\text{-invariance}$ $\int K(x,.) d\pi = \pi$	$\lim_{n \to \infty} \ I \ $
HMC	By construction, with the MH mechanism. [Duane and al, 1987]	Withou by assur pert
NUTS	Less trivial to check, performed in the Appendix of [Betancourt, 2017] Not reviewed NEW! + rewrite a proof with a general formalism [Durmus and al. 2023]	By bou and the H or withou with mo c

Hamiltonian Monte Carlo

HMC algorithm (h, T)

At iteration t, Markov chain at state X_t :

- 1. Sample $p_0 \sim \mathcal{N}(0_d, I_d)$ and set $q_0 = X_t$
- **Leapfrog integrator**: define for any l = 0, ..., T 1, 2. $\Phi_{h}^{(1)} = (\Psi_{h/2}^{(1)} \circ \Psi_{h}^{(2)} \circ \Psi_{h/2}^{(1)}), \ \Phi_{h}^{(l+1)} = \Phi_{h}^{(1)} \circ \Phi_{h}^{(l)},$ $\Psi^{(1)}_{\tau}(q,p) = (q,p-t\nabla U(q)),$ $\Psi_{\tau}^{(2)}(q,p) = (q + tp, p),$ for any $(q, p) \in (\mathbb{R}^d)^2$ and $t \ge 0$. Then, set $(q_T, p_T) = \Phi_h^{(T)}(q_0, p_0)$.

3. Sample
$$U^* \sim \mathcal{U}([0,1])$$

If $U^* \le \min \left\{ 1, \exp \left[H(q_0, p_0) - H(q_T, p_T) \right] \right\}$ Set $X_{t+1} = q_T$, otherwise set $X_{t+1} = X_t$.

<u>Comparison of the Euler types and Leapfrog</u> methods on the Gaussian case.

