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Introduction 
4

NUTS is used in PyMC3, Stan and Turing, widely used 
so]ware for Bayesian computaIonal staIsIcs. 

Other libraries use Gibbs sampling for its flexibility. (BUGS, JAGS) 

OK, in practice, everyone use NUTS when it is possible, 
 but why does it work well ? 



Litterature on the qualitative properties of HMC and NUTS. 
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Ergodicity Geometric ergodicity -invariance π

HMC 
 is fixedT

NUTS 
 variesT

? ?

lim
n→∞

| |Kn(x, ⋅ ) − π | |TV = 0, | |Kn(x, ⋅ ) − π | |𝒱 = O(ρn), ρ < 1∫ K(x, . )d π = π

Appendix of

[Durmus and al, 2017] [Durmus and al, 2017] 

Qualitative  
property 

[Duane and al, 1987] 

[Betancourt, 2017] 
Not reviewed 
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NEW ! NEW !

+ give a proof with a 
general formalism

[Durmus and al, 2023] [Durmus and al, 2023] 

By bounding the stepsize  
and the HMC’s assump&ons on , 
or without bounding the stepsize 

with more stringent regularity 
condi&ons on .

h
U

U

Condi&ons of the ergodicity + 
Condi&ons of HMC geometric 

ergodicity

[Durmus and al, 2023] 

NEW !

Without bounding the stepsize

NEW !

[Durmus and al, 2023] 

Appendix of
[Betancourt, 2017] 

Not reviewed 

[Duane and al, 1987] [Durmus and al, 2017] 
HMC 
 is fixedT

NUTS 
 variesT



Why this paper was not done before ? 
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The study of NUTS is highly technical. 
We introduce a general formalism and explicit expressions. 

NUTS relies on a stopping Ime . 
Its regularity is hard to analyze. 

(q0, p0) ∈ (ℝd)2 ↦ S(a, q0, p0)

TheoreIcal properIes are not very aaracIve.  
We try to sIck to the pracIcal situaIon framework.  
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Define poten&al energy   and Hamiltonian  

 for any  

U(q) = − log(π(q))

H(q, p) = U(q) + p⊤p/2 (q, p) ∈ (ℝd)2 .

Hamiltonian Monte Carlo

Hamiltonian dynamics , for any  

          

          

 

(q(t), p(t)) ∈ (ℝd)2 t ≥ 0.
dq(t)

dt
= ∇pH(q(t), p(t)) = p(t)

dp(t)
dt

= − ∇qH(q(t), p(t)) = − ∇U(q(t))

HMC algorithm (h, T )

  At iteraIon t, Markov chain at state  : 

1. Sample  and set  

2. Solve dynamics over Ime lengths  with the leapfrog integrator using  to get . 

3. Sample . If , set , otherwise set  

Xt

P0 ∼ 𝒩(0d, Id) (q(0), p(0)) = (Xt, P0)
T (h, T ) Φ(T)

h (Xt, P0) = (qT, pT)
U* ∼ 𝒰([0,1]) U* ≤ min {1, exp [H(q0, p0) − H(qT, pT)]} Xt+1 = qT Xt+1 = Xt .

Hamiltonian dynamics related to a pendulum.
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(MH)

The sampler efficiency related to the energy loss during the numerical integraIon 
 depends on the physical &me  . 

The Hamiltonian dynamics can create cycles. 
If  is too large, the proposiIon can be close to the starIng point ! 

How to select  ? 

[H(q0, p0) − H(qT, pT)] hT

T

h, T



q0

p0

q6 (q6 − q0)T p6 < 0

p6

q 6
− q 0

p6

>90°α

T = 6

The intuition behind the No U-Turn Sampler.
No U-turn criteria between  and , by denoIng  for any , 

 or . 

 

T1 T2 Φ( j)
h (q0, p0) = (qj, pj) (q0, p0) ∈ (ℝd)2

FT1,T2
q0

(p0) = (qT2
− qT1

)⊤pT1
< 0 (qT2

− qT1
)⊤pT2

< 0

9

We can not just take the last point  before the U-turn to have the target invariance !  
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p6

Stopping &me regularity condi&on : 

For any  the following set is dense, 

 

A more « human » condi&on to sa&sfy the previous one : 

  is -lypschitz and the stepsize is bounded by  with  
or  
  is gaussian and the stepsize is in  with  countable. 

or 

  is real-analy?c and  

q ∈ ℝd

𝖥q,−0 = {p ∈ ℝd : FT1,T2
q (p) ≠ 0, T1, T2 ∈ [−2Km + 1 : 2Km − 1]2, T1 ≠ T2}

∇U L C/(L2Km) C > 0 .

π ℝ*+∖ℋ ℋ

U lim
|q|→∞

|∇2U(q) | = 0
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q0

q6

Introduction of Dynamic HMC kernels

1

11

Let  and let an orbit selection kernel  
be a family of probability distributions on 

h > 0, Km ∈ ℕ
𝒫([−2Km, …,2Km])

Let an index selection kernel  
be a family of probability distributions on [−2Km, …,2Km]

{Ph( ⋅ |q0, p0) : (q0, p0) ∈ (ℝd)2}

{Qh( ⋅ |𝖩, q0, p0) : 𝖩 ⊂ [−2Km,2Km], (q0, p0) ∈ (ℝd)2}

q1

q2

q3

q4 q5

𝖩 = [0,…,6]

p02



Dynamic HMC algorithm
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Define the Dynamic HMC  as the 
Markov chain defined by the 
following steps that define  given  : 

(Ph, Qh)
(Qk)k∈ℕ

Qk+1 Qk

1. Sample  

2. Sample  with distribu?on  

3. Sample  with distribu?on  

4. Set , where 

Pk+1 ∼ 𝒩(0d, Id)

𝖨k+1 Ph( ⋅ |Qk, Pk+1)

Jk+1 Qh( ⋅ |𝖨k+1, Qk, Pk+1)

Qk+1 = proj1 {ΦJk+1
h (Qk, Pk+1)}

proj1 : (x, y) ∈ (ℝd)2 ↦ x ∈ ℝd

PHMC
h ({0,T} ∣ q0, p0) = 1

HMC case  : 

QHMC
h ( ⋅ |{0,T}, q0, p0) = (1 ∧

π̃(Φ(T)
h (q0, p0))

π̃(q0, p0) ) δT( ⋅ ) + (1 − 1 ∧
π̃(Φ(T)

h (q0, p0))
π̃(q0, p0) ) δ0( ⋅ )

where we denote by π̃(q, p) ∝ exp(−H(q, p)) = π(q) × exp(−p⊤p/2)



Dynamic HMC properties
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Kh(q0, 𝖠) ≠ ∑
j∈ℤ

ωj(q0) KHMC
h,j (q0, 𝖠)

General expression of the Dynamic HMC kernel for any : 𝖠 ∈ ℬ(ℝd)

Kh(q0, 𝖠) = ∫ 𝒩(p; 0d, Id)(p0)K̃h((q0, p0), 𝖠)d p0

K̃h((q0, p0), 𝖠) = ∑
𝖩⊂ℤ

∑
j∈𝖩

Ph(𝖩 |q0, p0)Qh( j |𝖩, q0, p0)δproj1(Φ( j)
h (q0,p0))(𝖠)

It is not a trivial extension of the HMC case 

π̃(q0, p0)Ph (𝖩 |q0, p0) = ∑
j∈ℤ

1𝖩(0)π̃ (Φ(−j)
h (q0, p0)) 𝖯h (𝖩 + j |Φ(−j)

h (q0, p0)) Qh (j |𝖩 + j, Φ(−j)
h (q0, p0))

Proposition : 

Assume that  satisfy the following equation for any  : (Ph, Qh) (q0, p0) ∈ (ℝd)2, 𝖩 ⊂ ℤ

Then,  leaves the target measure  invariant Kh π
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Assume, 

For any  and , 

Then, the invariant condiIon reduces to  

 

(q0, p0) ∈ (ℝd)2, 𝖩 ⊂ ℤ −j ∈ 𝖩, Ph (𝖩 + j |Φ(−j)
h (q0, p0)) = Ph (𝖩 |q0, p0)

π̃(q0, p0) = ∑
j∈ℤ

1𝖩(0)π̃ (Φ(−j)
h (q0, p0)) Qh (j |𝖩 + j, Φ(−j)

h (q0, p0))
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NUTS’ orbit selection kernel ph

For any  and (q0, p0) ∈ (ℝd)2, 𝖩 ⊂ ℤ −j ∈ 𝖩, Ph (𝖩 + j |Φ(−j)
h (q0, p0)) = Ph (𝖩 |q0, p0)Symmetry property  : 

Scheme of the construction of the index set  in the Algorithm 1 presented in [Durmus and al, 2023].  If

Explicit expression of  in the paper. ph

Binary tree enable fast 
practical recursive 
implementation. 
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Thank you again ! 



NUTS selection kernel qh .
11
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 By assuming 
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  lipschitz and 
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U
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U

h
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Hamiltonian Monte Carlo
HMC algorithm (h, T )

At iteraIon t, Markov chain at state  : 

1. Sample  and set  

2. Leapfrog integrator: define for any , 

 

 

 

for any  and  

Then, set . 

3. Sample  

If  

Set , otherwise set  

Xt

p0 ∼ 𝒩(0d, Id) q0 = Xt

l = 0,…, T − 1
Φ(1)

h = (Ψ(1)
h/2 ∘ Ψ(2)

h ∘ Ψ(1)
h/2) , Φ(l+1)

h = Φ(1)
h ∘ Φ(l)

h ,

Ψ(1)
t (q, p) = (q, p − t∇U(q)) ,

Ψ(2)
t (q, p) = (q + tp, p) ,

(q, p) ∈ (ℝd)2 t ≥ 0.

(qT, pT) = Φ(T)
h (q0, p0)

U* ∼ 𝒰([0,1])

U* ≤ min {1, exp [H(q0, p0) − H(qT, pT)]}
Xt+1 = qT Xt+1 = Xt .

7

Comparison of the Euler types and Leapfrog 
methods on the Gaussian case.


