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General framework
Multi (Layers | Modalities | Views) Learning [2, 3]
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General framework
Multi (Layers | Modalities | Views) Learning [2, 3]
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General framework
Multi (Layers | Modalities | Views) Learning [2, 3]
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General framework

Mlxture of Multllayer Integrator Stochastlc Block Model (m|m|SBM)
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Indicator membership matrices distribution

Probabilistic assumptions on the latent variables

N observations according to K classes 7. € {0,1}1Vxk
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Indicator membership matrices distribution

Probabilistic assumptions on the latent variables

V layers according to (J components W e {0,1}"*xC
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Adjacency multilayer distribution

Mixture of Multilayer SBM framework
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Bayesian framework of mimi-SBM
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Dir(.) : conjugate prior for the multinomial distribution. 9




Bayesian Framework

Marginal Likelihood of observed data (evidence)

P(A)=22J”P(A,Z,W, 7,p) do dm dp
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Bayesian Framework

Marginal Likelihood of observed data (evidence)

P(A)=ZZJ”P(A,Z,W, 7,p) do dm dp

Challenging problems :

o Integrals are difficult or impossible to compute analytically

O Sums over Z, and W are often intractable
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Variational distribution
ELBO and KL-divergence

Approximating complex posterior with simpler distributions

Given a variational distribution g over {Z, W,a,m,p}, we can
decompose the marginal log-likelihood into :

logP(A) = Z (¢()) + KL (g()I P(. [ A))

KL-divergence
Evidence Lower BOund (ELBO)
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Variational distribution
ELBO : mean-field approximation [7]

Typically selected from an easier-to-handle family of distributions

By the mean-field approximation, assume that g can be factorized as :

q(Z, W, o, 7, p) = Hq<Z> Hq(w ) H H q(c) 4(m) q(p)
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Variational distribution

ELBO : model selection criterion

Integrated Likelihood variational bayes (ILvb) :

Z (g(.)) =log -

(3 AT (8 r(x2,e)me,r(e,)
) )

- P > + log <
r (24T, T (8)

where I'( - ) is the Gamma function
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Variational Bayes

EM optimization

o Variational Bayes Expectation step (VBE-step) :
° g(Z),Vie{l,...,N}
o g(W,), Vve({l,..,V)

o Maximization step (M-step) :
© q(7)
° q(p)
° g(w)
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Worldwide Food Trading Networks

Dataset

® A global food trading dataset compiled by De Dominico et al. [11]

® This dataset comprises economic networks that feature various
products, with 99 countries as nodes and edges denoting trade
connections for specific food items

® Each layer reflects the international trade interactions involving
30 distinct food products
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Worldwide Food Trading Networks

Countries clustering

Clustering world map: countries are colored according to the clusters defined by the model.
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Worldwide Food Trading Networks

Food clustering

View component 1

View component 2

Processed or
prepared food
products

Beverages_non_alcoholic,
Food_prep_nes,
Chocolate_products_nes ,
Crude_materials,
Fruit_prepared_nes,
Beverages_distilled_alcoholic,
Pastry, Sugar_confectionery, Wine

Cheese_whole_cow_milk,
Cigarettes, Flour_wheat,

Beer_of_barley, Cereals_breakfast,

Coffee_green,
Milk_skimmed_dried,
Juice_fruit_nes, Maize,
Macaroni, Oil_palm,
Milk_whole_dried,
Oil_essential_nes, Rice_milled,
Sugar_refined, Tea
Spices_nes,
Vegetables_preserved_nes,
Water_ice_etc,
Vegetables_fresh_nes,
Tobacco_unmanufactured

basic food items,
and non-food
products

Table of members in view components
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Conclusion and next steps

Other parts on this work
X] Algorithm initialization strategy

X] Equivalence and comparison of selection criteria

X] Performance on simulated data :

X] View and individuals clustering

X] Model selection

X] Robustness according to perturbed adjacency matrices

[X] Model identifiability and parameter convergence
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Thank you for your attention !
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