Mixture of multilayer stochastic block models for multiview clustering

Kylliann De Santiago, Marie Szafranski, Christophe Ambroise

Multi (Layers | Modalities | Views) Learning [2, 3]

Milk A..1 Sugar A..2 Pastry A..3 Coffee

N observations and V views

 $A_{ijv} = \begin{cases} 1, & \text{if observations } (i, j) \\ & \text{belong to the same cluster,} \\ 0, & \text{otherwise.} \end{cases}$

Multiple layers, which are adjacency matrices derived from a group of variables used for clustering

Multi (Layers | Modalities | Views) Learning [2, 3]

3

Multi (Layers | Modalities | Views) Learning [2, 3]

MIxture of Multilayer Integrator Stochastic Block Model (mimiSBM)

Indicator membership matrices distribution

Probabilistic assumptions on the latent variables

N observations according to K classes

 $\mathbf{Z} \in \{0,1\}^{N \times K}$

$$\mathbf{Z}_{i} \sim \mathscr{M}(1, \, \boldsymbol{\pi} = (\pi_{1}, \dots, \pi_{K})) \text{ and } \mathbb{P}(\mathbf{Z} \mid \boldsymbol{\pi}) = \prod_{i=1}^{N} \prod_{k=1}^{K} \pi_{k}^{\mathbf{Z}_{ik}}$$

Indicator membership matrices distribution

Probabilistic assumptions on the latent variables

N observations according to K classes

 $\mathbf{Z} \in \{0,1\}^{N \times K}$

$$\mathbf{Z}_{i} \sim \mathscr{M}(1, \boldsymbol{\pi} = (\pi_{1}, \dots, \pi_{K})) \text{ and } \mathbb{P}(\mathbf{Z} \mid \boldsymbol{\pi}) = \prod_{i=1}^{N} \prod_{k=1}^{K} \pi_{k}^{\mathbf{Z}_{ik}}$$

V layers according to *Q* components $\mathbf{W} \in \{0,1\}^{V \times Q}$

$$\mathbf{W}_{\mathbf{v}} \sim \mathscr{M}(1, \boldsymbol{\rho} = (\rho_1, \dots, \rho_Q)) \text{ and } \mathbb{P}(\mathbf{W} | \boldsymbol{\rho}) = \prod_{v=1}^V \prod_{s=1}^Q \rho_v^{\mathbf{W}_{vs}}$$

Adjacency multilayer distribution

Mixture of Multilayer SBM framework :

$$A_{ijv} \mid \mathbf{Z}_i = k, \mathbf{Z}_j = l, \mathbf{W}_v = s \sim B\left(\alpha_{kls}\right)$$

Connection between observations according to the multiple layers

$$\mathbb{P}\left(\mathbf{A} \mid \mathbf{Z}, \mathbf{W}, \boldsymbol{\alpha}, \boldsymbol{\pi}, \boldsymbol{\rho}\right) = \prod_{\substack{i=1\\i< j}}^{N} \prod_{k,l=1}^{K} \prod_{\nu=1}^{V} \prod_{s=1}^{Q} \left(\mathbb{P}\left(A_{ij\nu} \mid \mathbf{Z}_{i} = k, \mathbf{Z}_{j} = l, \mathbf{W}_{\nu} = s, \boldsymbol{\alpha}, \boldsymbol{\pi}, \boldsymbol{\rho}\right) \right)^{\mathbf{Z}_{ik}\mathbf{Z}_{jl}\mathbf{W}_{\nu s}}$$
$$= \prod_{\substack{i=1\\i< j}}^{N} \prod_{k,l=1}^{K} \prod_{\nu=1}^{V} \prod_{s=1}^{Q} \left(\boldsymbol{\alpha}_{kls}^{A_{ij\nu}} \left(1 - \boldsymbol{\alpha}_{kls}\right)^{1 - A_{ij\nu}} \right)^{\mathbf{Z}_{ik}\mathbf{Z}_{jl}\mathbf{W}_{\nu s}}$$

Bayesian framework of mimi-SBM

Dir(.) : conjugate prior for the multinomial distribution. 9

Bayesian Framework

Marginal Likelihood of observed data (evidence)

$\mathbb{P}(\mathbf{A}) = \sum_{\mathbf{Z}} \sum_{\mathbf{W}} \iiint \mathbb{P}(\mathbf{A}, \mathbf{Z}, \mathbf{W}, \boldsymbol{\alpha}, \boldsymbol{\pi}, \boldsymbol{\rho}) \ d\boldsymbol{\alpha} \ d\boldsymbol{\pi} \ d\boldsymbol{\rho}$

Bayesian Framework

Marginal Likelihood of observed data (evidence)

$$\mathbb{P}(\mathbf{A}) = \sum_{\mathbf{Z}} \sum_{\mathbf{W}} \iiint \mathbb{P}(\mathbf{A}, \mathbf{Z}, \mathbf{W}, \boldsymbol{\alpha}, \boldsymbol{\pi}, \boldsymbol{\rho}) \ d\boldsymbol{\alpha} \ d\boldsymbol{\pi} \ d\boldsymbol{\rho}$$

Challenging problems :

- o Integrals are difficult or impossible to compute analytically
- $^{\circ}$ Sums over Z and W are often intractable

Variational distribution

ELBO and KL-divergence

Approximating complex posterior with simpler distributions

Given a variational distribution q over $\{\mathbf{Z}, \mathbf{W}, \alpha, \pi, \rho\}$, we can decompose the marginal log-likelihood into :

$$\log \mathbb{P}(\mathbf{A}) = \mathscr{L}(q(.)) + \mathrm{KL}(q(.) \parallel \mathbb{P}(. \mid A))$$

KL-divergence
Evidence Lower BOund (ELBO)

Variational distribution

ELBO : mean-field approximation [7]

Typically selected from an easier-to-handle family of distributions

By the mean-field approximation, assume that q can be factorized as :

$$q(\mathbf{Z}, \mathbf{W}, \boldsymbol{\alpha}, \boldsymbol{\pi}, \boldsymbol{\rho}) = \prod_{i=1}^{N} q(\mathbf{Z}_{i}) \prod_{\nu=1}^{V} q(\mathbf{W}_{\nu}) \prod_{s=1}^{Q} \prod_{k,k \leq l}^{K} q(\boldsymbol{\alpha}_{kls}) q(\boldsymbol{\pi}) q(\boldsymbol{\rho})$$
$$= \operatorname{Dir}(\boldsymbol{\pi}; \boldsymbol{\beta}) \operatorname{Dir}(\boldsymbol{\rho}; \boldsymbol{\theta}) \prod_{i=1}^{N} \mathscr{M}(\mathbf{Z}_{i}; 1, \boldsymbol{\tau}_{i}) \prod_{\nu=1}^{V} \mathscr{M}(\mathbf{W}_{\nu}; 1, \boldsymbol{\nu}_{\nu})$$
$$\prod_{s=1}^{Q} \prod_{k,k \leq l}^{K} \operatorname{Beta}(\boldsymbol{\alpha}_{kls}; \boldsymbol{\eta}_{kls}, \boldsymbol{\xi}_{kls})$$

Variational distribution

ELBO : model selection criterion

Integrated Likelihood variational bayes (ILvb) :

$$\begin{aligned} \mathscr{L}(q(.)) &= \log \left\{ \frac{\Gamma\left(\sum_{k=1}^{K} \beta_{k}^{0}\right) \prod_{k=1}^{K} \Gamma\left(\beta_{k}\right)}{\Gamma\left(\sum_{k=1}^{K} \beta_{k}\right) \prod_{k=1}^{K} \Gamma\left(\beta_{k}^{0}\right)} \right\} + \log \left\{ \frac{\Gamma\left(\sum_{q=1}^{Q} \theta_{q}^{0}\right) \prod_{q=1}^{Q} \Gamma\left(\theta_{q}^{0}\right)}{\Gamma\left(\sum_{q=1}^{Q} \theta_{q}\right) \prod_{q=1}^{Q} \Gamma\left(\theta_{q}^{0}\right)} \right\} \\ &+ \sum_{k \leq l} \sum_{q=1}^{K} \log \left\{ \frac{\Gamma\left(\eta_{klq}^{0} + \xi_{klq}^{0}\right) \Gamma\left(\eta_{klq}\right) \Gamma\left(\xi_{klq}\right)}{\Gamma\left(\eta_{klq} + \xi_{klq}\right) \Gamma\left(\eta_{klq}^{0}\right) \Gamma\left(\xi_{klq}^{0}\right)} \right\} - \sum_{i}^{N} \sum_{k}^{K} \tau_{ik} \log \tau_{ik} - \sum_{v}^{V} \sum_{q}^{Q} \nu_{vq} \log \nu$$

where $\Gamma(\ \cdot\)$ is the Gamma function

Variational Bayes

EM optimization

- Variational Bayes Expectation step (VBE-step) :
 - $q(\mathbf{Z}_i), \forall i \in \{1,...,N\}$
 - $q(\mathbf{W}_{\mathbf{v}}), \forall v \in \{1, ..., V\}$
- o Maximization step (M-step) :

- $\circ q(\mathbf{\rho})$
- q(<u>a</u>)

Worldwide Food Trading Networks

Dataset

• A global food trading dataset compiled by *De Dominico et al.* [11]

 This dataset comprises economic networks that feature various products, with <u>99 countries</u> as nodes and edges denoting trade connections for specific food items

Each layer reflects the international trade interactions involving
30 distinct food products

Worldwide Food Trading Networks

Countries clustering

Clustering world map: countries are colored according to the clusters defined by the model.

Worldwide Food Trading Networks

Food clustering

	View component 1	View component 2	
Processed or prepared food products	Beverages_non_alcoholic, Food_prep_nes, Chocolate_products_nes, Crude_materials, Fruit_prepared_nes, Beverages_distilled_alcoholic, Pastry, Sugar_confectionery, Wine	Cheese_whole_cow_milk, Cigarettes, Flour_wheat, Beer_of_barley, Cereals_breakfast, Coffee_green, Milk_skimmed_dried, Juice_fruit_nes, Maize, Macaroni, Oil_palm, Milk_whole_dried, Oil_essential_nes, Rice_milled, Sugar_refined, Tea Spices_nes, Vegetables_preserved_nes, Water_ice_etc, Vegetables_fresh_nes, Tobacco_unmanufactured	basic food items, and non-food products

Table of members in view components

Conclusion and next steps

Other parts on this work

- [X] Algorithm initialization strategy
- [X] Equivalence and comparison of selection criteria

[X] Performance on simulated data :

- [X] View and individuals clustering
- [X] Model selection

[X] Robustness according to perturbed adjacency matrices

[X] Model identifiability and parameter convergence (Less than a fortnight ago)

Thank you for your attention !

References

[1] Baltrušaitis, T., Ahuja, C., & Morency, L. P. (2018). Multimodal machine learning: A survey and taxonomy. *IEEE transactions on pattern analysis and machine intelligence*, *41*(2), 423-443.

[2] Zhao, J., Xie, X., Xu, X., & Sun, S. (2017). Multi-view learning overview: Recent progress and new challenges. *Information Fusion*, 38, 43-54.

[3] Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003). Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. *Machine learning*, *52*, 91-118.

[4] Jing, B. Y., Li, T., Lyu, Z., & Xia, D. (2021). Community detection on mixture multilayer networks via regularized tensor decomposition. *The Annals of Statistics*, *49*(6), 3181-3205.

[5] Rebafka, T. (2023). Model-based clustering of multiple networks with a hierarchical algorithm.

[6] Latouche, P., Birmele, E., & Ambroise, C. (2012). Variational Bayesian inference and complexity control for stochastic block models. *Statistical Modelling*, *12*(1), 93-115.

[7] Wainwright, M. J., & Jordan, M. I. (2008). Graphical models, exponential families, and variational inference. *Foundations and Trends*® *in Machine Learning*, *1*(1–2), 1-305.

[8] Allman, E. S., Matias, C., & Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables.

[9] Celisse, A., Daudin, J. J., & Pierre, L. (2012). Consistency of maximum-likelihood and variational estimators in the stochastic block model.

[10] Tabouy, T., Barbillon, P., & Chiquet, J. (2020). Variational inference for stochastic block models from sampled data. *Journal of the American Statistical Association*, *115*(529), 455-466.

[11] Manlio De Domenico, Vincenzo Nicosia, Alexandre Arenas, and Vito Latora. Structural reducibility of multilayer networks. Nature communications, 6(1): 6864, 2015.