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Setting



Estimating conditional probabilities

• Binary outcome y ∈ {−1, 1}; covariates x ∈ Rd .

• Random pair Z = (X ,Y ) ∼ P on Rd × {−1, 1}, distribution P

unknown.

Definition (well-specified logit model)

P(Y = 1|X ) = σ(⟨θ∗,X ⟩), θ∗ ∈ Rd (1)

where

σ : t 7→ 1

1 + e−t

is the logistic (or sigmoid) function.

• Goal: estimate conditional probability P(Y = 1|X = x)

through θ∗ with the logarithmic loss

L(θ) = Eℓ(θ,Z ) = E [log (1 + exp(−Y ⟨θ,X ⟩))] .
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Empirical risk minimizer

Logistic Regression: fitting the best logit model when given a

random i.i.d. sample Z1, . . . ,Zn ∼ P:

• Empirical risk corresponding to the logarithmic loss

Ln(θ) =
1

n

n∑
i=1

log (1 + exp(−Yi ⟨θ,Xi ⟩)) .

• We study the empirical risk minimizer (ERM)

θ̂n = argmin
θ∈Rd

Ln(θ).

• Also the maximum likelihood estimator.
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Overview of existing results



Asymptotic normality of the MLE, fast rate excess risk

Wilks’ theorem: In the well-specified setting, for fixed d and

θ∗ ∈ Rd ,

lim sup
n→∞

P
(
2n

(
L(θ̂n)− L(θ∗)

)
⩾ 3(d + t)

)
⩽ 1− e−t . (2)

Optimal rates.

Asymptotic: requires a fixed d and n → ∞, and hides the

dependency on θ∗: what happens when ∥θ∗∥ ≫ 1 ?
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How to reach these ideal bounds ?

Question

Minimal sample size and distributional assumptions for

L(θ̂n)− L(θ∗) ⩽ C
d + t

n
(3)

to hold w.p. 1− e−t (with C an absolute constant) ?

• The signal strength B = ∥θ∗∥Σ is a critical parameter : if

n ≲ Bd , the MLE a.s. does not exist (Candès and Sur ’20).

• Otherwise it exists, but is n ≳ B(d + t) enough to guarantee a

bound like (3) ?

• No dependency on B in (3) is crucial.
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Previous work on finite sample rates

• (Chinot et al. ’20) If n ≳ B6d ,

L(θ̂n)− L(θ∗) ≲ B5 d

n
w.p. 1− e−d . (4)

Local assumptions (Bernstein condition),

broader scope (general ERM),

Entanglement of confidence level and dimension,

sub-optimal bounds in the high signal-to-noise ratio (SNR).

• (Ostrovskii and Bach, ’21) If

n ≳ log8(B)B8d t (5)

L(θ̂n)− L(θ∗) ≲ B3 d t

n
w.p. 1− e−t . (6)

All confidence levels t ⩾ 0.

Many assumptions, although local.

wrong dependency on B.
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Recent works on the topic

• ∼ 3 months ago : (van de Geer and Kuchelmeister ’23) consider

the logistic regression with a probit model.

• (Hsu and Mazumdar ’23) consider the well-specified logit model

with gaussian covariates and compute the sample size required

to estimate the direction of θ∗.
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Main result



Main result: Gaussian design in the well specified model

Theorem (C., Lerasle, Mourtada)

If X ∼ N (0,Σ) and the model is well-specified, if

n ⩾ CB(d + t), then w.p. 1− e−t ,

L(θ̂n)− L(θ∗) ⩽ C
d + t

n
. (7)

Tight dependencies on B, d and t (match asymptotic theory).

Sharp transition from non existence of the MLE (n ≲ Bd) to

existence with optimal behavior.
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Extensions



Robustness to misspecification

No modelling assumption on Y |X . Define

θ∗ = argmin
θ∈Rd

{
L(θ) = E log(1 + exp(−Y ⟨θ,X ⟩))

}
as in statistical learning (well defined because L is strictly convex).

Theorem (C., Lerasle, Mourtada)

If X ∼ N(0,Σ) and without any assumption on Y |X, if

n ⩾ C B(d + B2t), then w.p. 1− e−t

L(θ̂n)− L(θ∗) ⩽ C log4(B)
d + B2t

n
. (8)

Does not match the well-specified setting bound but significantly

improve existing results.

No assumption whatsoever on the link between X and Y .

10



Robustness to misspecification

No modelling assumption on Y |X . Define

θ∗ = argmin
θ∈Rd

{
L(θ) = E log(1 + exp(−Y ⟨θ,X ⟩))

}
as in statistical learning (well defined because L is strictly convex).

Theorem (C., Lerasle, Mourtada)

If X ∼ N(0,Σ) and without any assumption on Y |X, if

n ⩾ C B(d + B2t), then w.p. 1− e−t

L(θ̂n)− L(θ∗) ⩽ C log4(B)
d + B2t

n
. (8)

Does not match the well-specified setting bound but significantly

improve existing results.

No assumption whatsoever on the link between X and Y .

10



Robustness to misspecification

No modelling assumption on Y |X . Define

θ∗ = argmin
θ∈Rd

{
L(θ) = E log(1 + exp(−Y ⟨θ,X ⟩))

}
as in statistical learning (well defined because L is strictly convex).

Theorem (C., Lerasle, Mourtada)

If X ∼ N(0,Σ) and without any assumption on Y |X, if

n ⩾ C B(d + B2t), then w.p. 1− e−t

L(θ̂n)− L(θ∗) ⩽ C log4(B)
d + B2t

n
. (8)

Does not match the well-specified setting bound but significantly

improve existing results.

No assumption whatsoever on the link between X and Y .
10



Design relaxation in the well-specified setting

The Gaussian design assumption is not necessary !

Theorem (C., Lerasle, Mourtada)

In the well-specified model, for more general designs (technical

conditions), if n ⩾ C B(d logB + t), w.p. 1− e−t ,

L(θ̂n)− L(θ∗) ⩽ C log4(B)
d + t

n
.
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Proofs Ideas



Outline

Unified framework for the different proofs: localize θ̂n by

controlling

Ln(θ)− Ln(θ
∗) = ⟨∇Ln(θ

∗), θ − θ∗⟩+
∥∥∥Hn

(
θ̃
)1/2

(θ − θ∗)
∥∥∥2

locally by

• bounding from above the gradient at θ∗,

• bounding from below the Hessians around θ∗ uniformly.
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Deviations of the gradient

Let g̃ denote the suitably rescaled gradient.

• We want to control

∥∥H−1/2∇Ln(θ
∗)
∥∥ = sup

v∈Sd−1

1

n

n∑
i=1

⟨v , g̃i ⟩.

Unbounded but sub-gaussian empirical process.

• Vanilla sub-Gaussian deviations: w.p. 1− e−t ,∥∥H−1/2∇Ln(θ
∗)
∥∥2 ≲ B3 d + t

n
. (9)

• Replace sub-Gaussian norm by variance. No distinction leads to

bad dependencies on B.
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Deviations of the gradient

• Weak variance → Talagrand type inequality. (Xi ,t)t∈T ,i∈[n] a

bounded centered process (|Xt | ⩽ b a.s.),

Z = sup
t∈T

1

n

∣∣∣∣ n∑
i=1

Xi ,t

∣∣∣∣ σ2 = sup
t∈T

EX 2
t ,

w.p. 1− e−t

Z ≲ EZ + σ
√
t + bt.

We need a version for unbounded processes.

• B3 from the worst direction. “Super Bernstein” with

Sub-Gaussian or sub-exponential norms ? No, leads to a

residual B3 in the second order term.

• Key is sub-gamma bounds !
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Bounding from below empirical Hessians

• The Hessian does not depend on the conditional distribution of

Y |X .

• Control the uniform lower tail of a collection of random

matrices:

inf
θ∈Θ

λmin(H
−1/2Hn(θ)H

−1/2) = inf
(θ,v)∈Θ×Sd−1

〈
H−1/2Hn(θ)H

−1/2v , v
〉

= inf
(θ,v)

1

n

n∑
i=1

σ′(⟨θ,Xi ⟩)⟨v ,H−1/2Xi ⟩2.

• For a single matrix: lower bounds from (Oliveira ’16) and

(Zhivotovskiy ’21). Additional technical difficulty due to the

uniformity over Θ and the non linearity of σ′ . We adapt the

PAC- Bayesian approach.
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Conclusion

• Take home message: In the well specified setting, as soon as

the maximum likelihood estimator exists, it satisfies the optimal

bound known from the asymptotic theory !

• A nearly-optimal result still holds in the case of a misspecified

model.

• This remains true with much more general designs.
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Thank you!
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Design relaxation

Exemple of sufficient design conditions. Denote by V = ⟨v ,X ⟩ the
projection of X in the direction v ∈ Sd−1 and fV its density.

Similarly fU,V the joint density of ⟨u,X ⟩ and ⟨v ,X ⟩.

• (Sub-exponential design.) For all v ∈ Sd−1, ∥⟨v ,X ⟩∥ψ1 ⩽ K ,

• (Bounded densities of the one-dimensional marginals.)

∃M > m > 0 s.t. ∀v ∈ Sd−1,

∀t ∈ [−1, 1], fV (t) ⩾ m; ∀t ∈ R, fV (t) ⩽ M. (10)

• (dim 2 marginals) u∗ = direction of θ∗. ∃M2 > m2 > 0 s.t.

∀v ∈ Sd−1,

∀(s, t) ∈ [−1, 1]2, fU∗,V (s, t) ⩾ m2

∀(s, t) ∈ R2, fU∗,V (s, t) ⩽ M2.
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